2,312 research outputs found

    Universal Mass Texture, CP violation and Quark-Lepton Complementarity

    Full text link
    The measurements of the neutrino and quark mixing angles satisfy the empirical relations called Quark-Lepton Complementarity. These empirical relations suggest the existence of a correlation between the mixing matrices of leptons and quarks. In this work, we examine the possibility that this correlation between the mixing angles of quarks and leptons originates in the similar hierarchy of quarks and charged lepton masses and the seesaw mechanism type~I, that gives mass to the Majorana neutrinos. We assume that the similar mass hierarchies of charged lepton and quark masses allows us to represent all the mass matrices of Dirac fermions in terms of a universal form with four texture zeroes.Comment: 14 page

    A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions

    Get PDF
    It is expected, and regionally observed, that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources in a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid energy sources is based on the complementary nature of renewable sources. Considering the growing importance of such systems and increasing number of research activities in this area this paper presents a comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatio-temporal complementarity between renewable energy sources. The review starts with a brief overview of available research papers, formulates detailed definition of major concepts, summarizes current research directions and ends with prospective future research activities. The review provides a chronological and spatial information with regard to the studies on the complementarity concept.Comment: 34 pages 7 figures 3 table

    Generalized μ−τ\mu-\tau reflection symmetry and leptonic CP violation

    Get PDF
    We propose a generalized μ−τ\mu-\tau reflection symmetry to constrain the lepton flavor mixing parameters. We obtain a new correlation between the atmospheric mixing angle θ23\theta_{23} and the "Dirac" CP violation phase δCP\delta_{\rm CP}. Only in a specific limit our proposed CP transformation reduces to standard μ−τ\mu-\tau reflection, for which θ23\theta_{23} and δCP\delta_{CP} are both maximal. The "Majorana" phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay rates. We also study the phenomenological implications of our scheme for present and future neutrino oscillation experiments including T2K, NOν\nuA and DUNE.Comment: 14 pages, 9 figures, latex, Final version to appear in Physics Letters

    Maximum power, ecological function and efficiency of an irreversible Carnot cycle. A cost and effectiveness optimization

    Get PDF
    In this work we include, for the Carnot cycle, irreversibilities of linear finite rate of heat transferences between the heat engine and its reservoirs, heat leak between the reservoirs and internal dissipations of the working fluid. A first optimization of the power output, the efficiency and ecological function of an irreversible Carnot cycle, with respect to: internal temperature ratio, time ratio for the heat exchange and the allocation ratio of the heat exchangers; is performed. For the second and third optimizations, the optimum values for the time ratio and internal temperature ratio are substituted into the equation of power and, then, the optimizations with respect to the cost and effectiveness ratio of the heat exchangers are performed. Finally, a criterion of partial optimization for the class of irreversible Carnot engines is herein presented.Comment: 17 pages, 4 figures. Submitted to Energy Convers. Manag

    Remarkable magnetostructural coupling around the magnetic transition in CeCo0.85_{0.85}Fe0.15_{0.15}Si

    Get PDF
    We report a detailed study of the magnetic properties of CeCo0.85_{0.85}Fe0.15_{0.15}Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo0.85_{0.85}Fe0.15_{0.15}Si becomes antiferromagnetic at TN≈T_N \approx 6.7 K. However, a broad tail (onset at TX≈T_X \approx 13 K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at TXT_X. A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion becomes a well pronounced peak fully split from the magnetic transition at TNT_N. Concurrently, the magnetoresistance also switches from negative to positive just below TXT_X. The magnetostriction is considerable and irreversible at low temperature (ΔLL(16T)∼\frac {\Delta L}{L} \left(16 T\right) \sim 4×\times10−4^{-4} at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low TT may be the signature of a weak ongoing metamagnetic transition. Taking altogether, the results indicate the importance of the lattice effects in the development of the magnetic order in these alloys.Comment: 5 pages, 6 figure
    • …
    corecore